Puede utilizar el filtro de búsqueda del panel izquierdo para acotar los resultados
Filtro
Tipo de publicación
Todos Libros Revistas
Título
Autor
Palabras clave
ISBN
Acceso DOI
Acceso digital CSIC
Buscar
Datos técnicos
RevistaJBIC
Año2006
Volumen11
Páginas247-260
Internacional

An improved purification procedure for the soluble [NiFe]-hydrogenase of Ralstonia eutropha: new insights into its (in)stability and spectroscopic properties

Autores:Eddy Van Der Linden , Tanja Burgdorf , Antonio López de Lacey, Thorsten Buhrke , Marcel Scholte , Víctor Manuel Fernández López, Baerbel Friedrich , Simon P. J. Albracht
Grupos de investigación:BioElectroCatálisis
Infrared (IR) spectra in combination with chemical analyses have recently shown that the active Ni–Fe site of the soluble NAD+-reducing [NiFe]-hydrogenase from Ralstonia eutropha contains four cyanide groups and one carbon monoxide as ligands. Experiments presented here confirm this result, but show that a variable percentage of enzyme molecules loses one or two of the cyanide ligands from the active site during routine purification. For this reason the redox conditions during the purification have been optimized yielding hexameric enzyme preparations (HoxFUYHI2) with aerobic specific H2–NAD+ activities of 150–185 μmol/min/mg of protein (up to 200% of the highest activity previously reported in the literature). The preparations were highly homogeneous in terms of the active site composition and showed superior IR spectra. IR spectro-electrochemical studies were consistent with the hypothesis that only reoxidation of the reduced enzyme with dioxygen leads to the inactive state, where it is believed that a peroxide group is bound to nickel. Electron paramagnetic resonance experiments showed that the radical signal from the NADH-reduced enzyme derives from the semiquinone form of the flavin (FMN-a) in the hydrogenase module (HoxYH dimer), but not of the flavin (FMN-b) in the NADH-dehydrogenase module (HoxFU dimer). It is further demonstrated that the hexameric enzyme remains active in the presence of NADPH and air, whereas NADH and air lead to rapid destruction of enzyme activity. It is proposed that the presence of NADPH in cells keeps the enzyme in the active state.
Palabras clave:Cyanide ligand - [NiFe]-hydrogenase - Oxygen sensitivity - Ralstonia eutropha - NADPH reduction - HoxI subunit - Protein purification
logo de CSIC