You can use the filter on the left to narrow the results
Previous
Type
All Books Papers
Title
Author
Keywords
ISBN
DOI Access
CSIC digital access
Search
Details
PublicationJournal of Catalysis
Year2017
Volume352
Pages191-217
International

Effect of framework topology of SAPO catalysts on selectivity and deactivation profile in the methanol-to-olefins reaction

Authors:I. Pinilla-Herrero, Carlos Márquez Álvarez, Enrique Sastre
Groups of research:Molecular Sieves
Catalytic performance in the methanol-to-olefins reaction was studied on four 8-ring silicoaluminophosphate (SAPO) molecular sieves with different framework topologies and cavity-windows of various dimensions: SAPO-35 (LEV), SAPO-56 (AFX), STA-7 (SAV), and SAPO-42 (LTA). The four catalysts were compared with the widely investigated SAPO-34 (CHA) and showed remarkable differences in lifetime and products selectivity. In particular, the STA-7 catalyst gave higher selectivity to C3–C4 olefins, while it had methanol conversion capacity similar to that of a SAPO-34 catalyst with similar crystal size and acidity. Organic species retained in the cavities of partially deactivated catalysts were analyzed at different times on stream. The changes in composition of trapped compounds were correlated with those of the effluent products to elucidate the reaction mechanism and the deactivation pathway. The differences in effluent product distribution and trapped coke species suggest that framework topology has a great influence not only on the stability of the materials but also on the products distribution.
Keywords:8R Silicoaluminophosphate Methanol to olefins Selectivity Deactivation
logo de CSIC