Puede utilizar el filtro de búsqueda del panel izquierdo para acotar los resultados
Filtro
Tipo de publicación
Todos Libros Revistas
Título
Autor
Palabras clave
ISBN
Acceso DOI
Acceso digital CSIC
Buscar
Datos técnicos
RevistaJournal of Cleaner Production
Año2017
Volumen143
Páginas847-853
Internacional

Multivalorization of apple pomace towards materials and chemicals. Waste to wealth

Autores:Malcolm Yates Buxcey, María Angeles Martín Luengo, Ana María Martínez Serrano
Grupos de investigación:Usos avanzados de Ecomateriales procedentes de la industria agroalimentaria
The work presented here uses apple pomace (AP), an industrial waste from apple juice and cider production as a renewable raw material (RRM), to obtain materials that can be utilized as biocompatible scaffolds for osteoblasts and chondrocytes, employed in tissue engineering, valuable extracts that can be used as nutraceuticals and pectin. All of these have much higher values than the original raw material, pectin can be priced up to 1 euro/g, chlorogenic acid is ca. 120 euros/g, caffeic acid 3e5 euros/g and especially the scaffolds that are usually made by synthetic methods using non-renewable raw materials with high fabrication costs and sold at prices higher than 100 euros/g, while the residues used here have prices lower than 100 euros per ton. Thus, there are clear environmental and financial incentives in transforming this waste material into valuable substances and materials. As indicated in the Graphical Abstract, the procedure followed consists in sequential extractions of antioxidants, pectin and finally the preparation of a biocompatible material, giving priority to the latter due to its importance as a renewable scaffold for tissue engineering. From a literature search, to date, although separate ways of valorization have been applied to this kind of waste, the sequential multivalorization adopted here, has not been previously attempted. Furthermore, biocompatible scaffolds from AP have not been described.
Palabras clave:Renewable raw materials, Sustainable development, Apple waste, Biomaterials, Tissue engineering
logo de CSIC