Puede utilizar el filtro de búsqueda del panel izquierdo para acotar los resultados
Filtro
Tipo de publicación
Todos Libros Revistas
Título
Autor
Palabras clave
ISBN
Acceso DOI
Acceso digital CSIC
Buscar
Datos técnicos
RevistaChemCatChem, .
Año2012
Volumen4 (9)
Páginas1279-1288
Internacional

Rational co-immobilization of bi-enzyme cascades on porous supports and their applications in bio-redox reactions with insitu recycling of soluble cofactors

Autores:PUBLICACIONES
Grupos de investigación:Ingeniería Enzimática
In bio-redox cascade reactions that are immobilized on porous supports, mass-transfer limitations may impede the effective concentration of the cofactor around the corresponding dehydrogenases. This main drawback has been addressed by the co-immobilization of both the main and recycling dehydrogenases. Herein, we report tailor-made co-immobilization procedures to assemble three different bio-redox orthogonal cascades invitro (two selective reductions and one selective oxidation) with insitu cofactor-regeneration. However, the co-immobilization itself does not guarantee the success of the biotransformation because the same co-immobilization chemistry may not be suitable for the two enzymes that are involved in the bio-redox cascade. Therefore, our co-immobilization system was optimized for each bi-enzymatic cascade. In all cases, the optimized co-immobilization procedure was more efficient in the biocatalytic cascade than if the two dehydrogenases were immobilized on two different carriers. In one specific case (one thermophilic cascade), the co-immobilization of an optimal ratio of main/recycling dehydrogenases (1:5) on the same carrier resulted in a biocatalyst that was able to recycle NADH up to 9000times per equivalent of substrate in 1hour at 55°C. Moreover, uniform distributions of both dehydrogenases across the porous surface also enhanced the recycling efficiency of the cofactor 1.5-fold versus cascades in which the enzymes were not uniformly distributed across the same porous surface, presumably because of vicinal cooperation effects. Hence, this system for the co-immobilization of bi-enzymatic systems may be extended to other biocatalytic cascades, thereby opening a window for the optimization of other multi-enzyme biotransformations in which cofactor-recycling is necessary. 
Palabras clave:
logo de CSIC