You can use the filter on the left to narrow the results
Previous
Type
All Books Papers
Title
Author
Keywords
ISBN
DOI Access
CSIC digital access
Search
Details
PublicationMethods in Molecular Biology,
Year2013
Volume1051
Pages59-71.
International

Stabilization of enzymes by multipoint covalent immobilization on supports activated with glyoxyl groups

Authors:PUBLICACIONES
Groups of research:Enzymatic Engineering
Stabilization of enzymes via immobilization techniques is a valuable approach in order to convert a necessary protocol (immobilization) into a very interesting tool to improve key enzyme properties (stabilization). Multipoint covalent attachment of each immobilized enzyme molecule may promote a very interesting stabilizing effect. The relative distances among all enzyme residues involved in immobilization has to remain unaltered during any conformational change induced by any distorting agent. Amino groups are very interesting nucleophiles placed on protein surfaces. The immobilization of enzyme through the region having the highest amount of amino groups (Lys residues) is key for a successful stabilization. Glyoxyl groups are small aliphatic aldehydes that form very unstable Schiff's bases with amino groups and they do not seem to be useful for enzyme immobilization at neutral pH. However, under alkaline conditions, glyoxyl supports are able to immobilize enzymes via a first multipoint covalent immobilization through the region having the highest amount of Lysine groups. Activation of supports with a high surface density of glyoxyl groups and the performance of very intense enzyme-support multipoint covalent attachments are here described.
Keywords:
logo de CSIC